Hazelnut shell as a valuable bio-waste support for green synthesis of Ag NPs using Origanum vulgare leaf extract: Catalytic activity for reduction of methyl orange and Congo red
نویسنده
چکیده مقاله:
In this work the Origanum vulgare leaf extract was used to green synthesis of Ag nanoparticles (NPs) supported on Hazelnut shell as an environmentally benign support. The Ag NPs/Hazelnut shell as an effective catalyst was prepared through reduction of Ag+ ions using Origanum vulgare leaf extract as the reducing and capping agent and Ag NPs immobilization on Hazelnut shell surface in the absence of any stabilizer or surfactant. According to FT-IR analysis, the hydroxyl groups of phenolics in Origanum vulgare leaf extract as bio-reductant agents are directly responsible for the reduction of Ag+ ions and formation of Ag NPs. The as-prepared catalyst was characterized by Fourier transform infrared (FT-IR) and UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) equipped with an energy dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD) and transmittance electron microscopy (TEM). The synthesized catalyst was used in the reduction of Methyl Orange (MO), and Congo Red (CR) at room temperature. The Ag/Hazelnut shell showed excellent catalytic activity in the reduction of these organic dyes. In addition, it was found that Ag/Hazelnut shell can be recovered and reused several times without significant loss of catalytic activity.
منابع مشابه
Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity.
The synthesis of Palladium (Pd) nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs) using an aqueous extract of aerial parts of Origanum vulgare L. (O...
متن کاملBiosynthesis of Ag Nanoparticles at Ziziphus Jujuba Kernel Substrate using Tilia platyphyllos Extract: Catalytic Activity for Reduction of Organic Dyes
For the first time the extract of the plant of Tilia platyphyllos was used to green synthesis of Ag nanoparticles (NPs) supported on Ziziphus jujuba kernel as an environmentally benign support. Ag NPs/ Ziziphus jujuba kernelas an effective catalyst was prepared through reduction of Ag+ions using Tilia platyphyllos extractas the reducing and capping agent and Ag NPs immobilization...
متن کاملnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Removal of 4-Nitrophenol and Organic Dyes from Aqueous Solution Using Ag/ZnO Nanocomposite Prepared by Euphorbia peplus L. Extract
Background & objectives: Nitroanene compounds and toxic dyes are considered major pollutants in sewage of various industries. These synthetic organic compounds are highly toxic and one of the most resistant pollutants in the environment. Developing a simple and effective method to destroy non-biodegradable pollutants into non-hazardous products is one of the major challenges in environmental st...
متن کاملcomparison of catalytic activity of heteropoly compounds in the synthesis of bis(indolyl)alkanes.
heteropoly acids (hpa) and their salts have advantages as catalysts which make them both economically and environmentally attractive, strong br?nsted acidity, exhibiting fast reversible multi-electron redox transformations under rather mild conditions, very high solubility in polar solvents, fairly high thermal stability in the solid states, and efficient oxidizing ability, so that they are imp...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 2
صفحات 111- 119
تاریخ انتشار 2017-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023